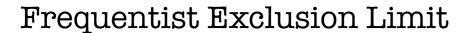
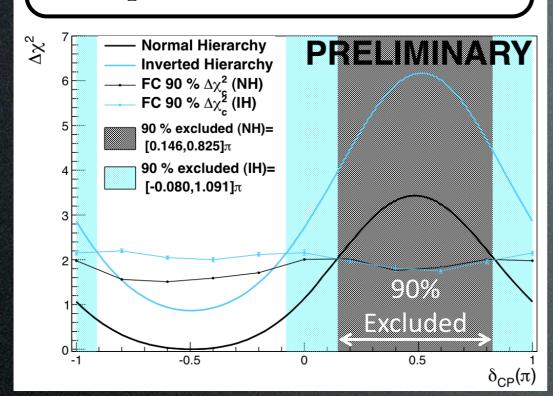

T2K Sensitivities to Neutrino Oscillation Parameters


Mike Wilking, Stony Brook University
Workshop on the Intermediate Neutrino Program
5-Feb-2015


Where are we now?

- Most precise measurement of θ_{23}
- First observation of v_e appearance (7.3 σ)


CP Violation

- $v_e + v_\mu$ fit with reactor constraint
 - $\sin^2 2\theta_{13} = 0.095 \pm 0.010 \text{ (PDG 2013)}$
- Both Frequentist (left) and Bayesian (right) methods
- Best fit at δ_{CP} =- $\pi/2$
- Slight preference for $\theta_{23} > \pi/2$ and normal hierarchy

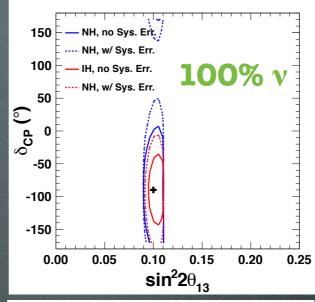
Bayesian Credible Interval

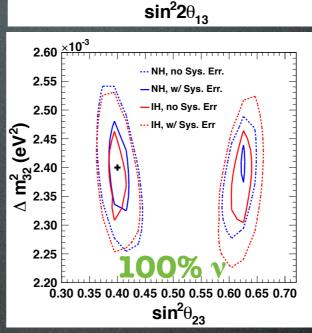
	NH	IH	Sum
sin²θ ₂₃ ≤0.5	0.179	0.078	0.257
$\sin^2 \theta_{23} > 0.5$	0.505	0.238	0.743
Sum	0.684	0.316	1.00

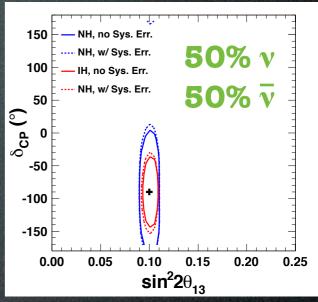
posterior probabilities marginalizing over other parameters

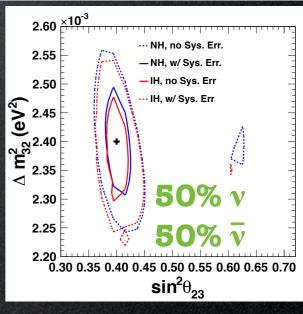
What precision can T2K ultimately reach?

http://arxiv.org/abs/1409.7469

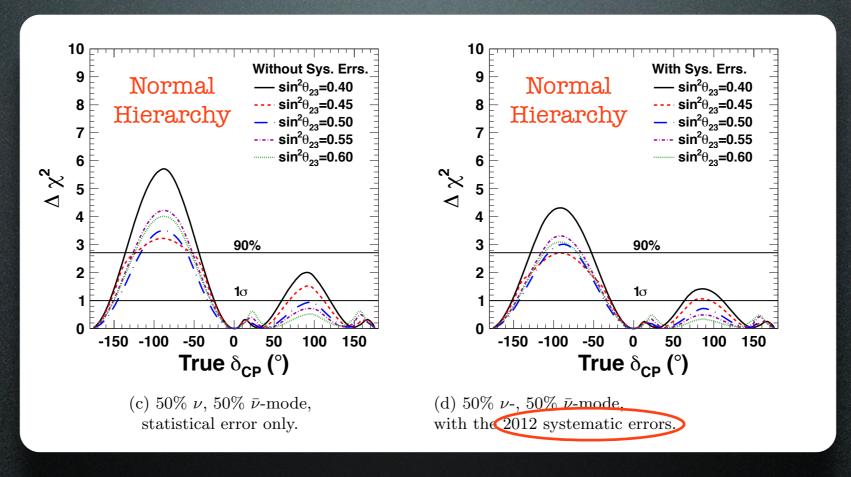

T2K Run Plan

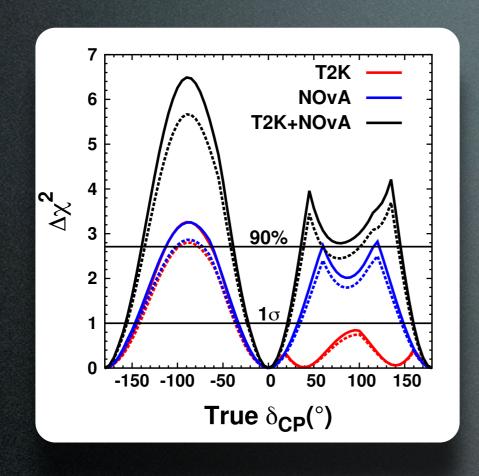

SCE

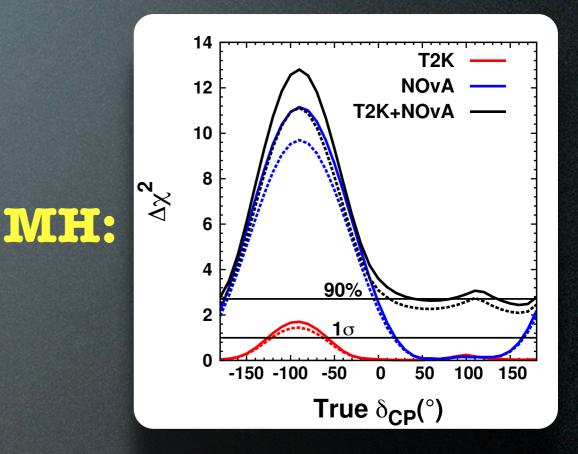

Sensitivities with full 7.8 x 10²¹ POT


Assumed ultimate reactor constraint of $\sin^2 2\theta_{13}$ =0.01±0.005

θas Octant

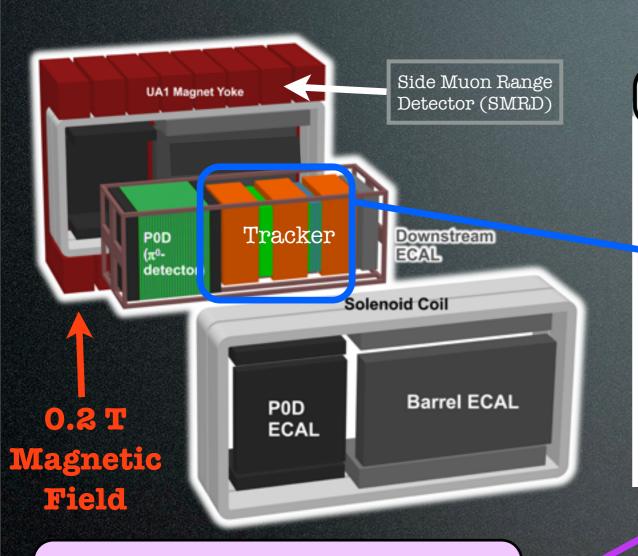


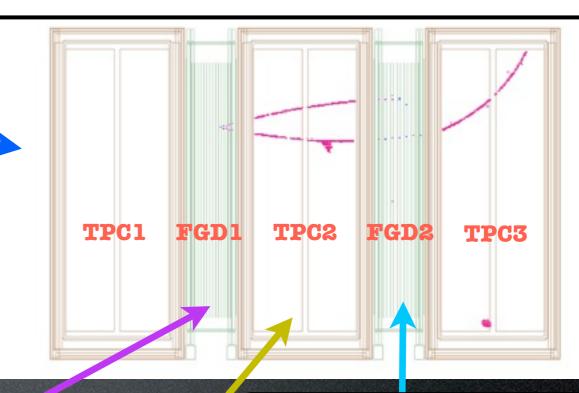

- Running with both neutrinos and anti-neutrinos improves T2K sensitivity to both δ_{CP} and the θ_{23} octant
 - Cancelation of systematic errors between v and \bar{v}
 - Breaks degeneracy between effects of δ_{CP} and θ_{23}


T2K CP Violation Sensitivity

- CP violation sensitivity depends on the MH and θ_{23}
 - For the most fortunate choice of parameters, T2K is sensitive to CP violation at the 2-2.5 σ level
- At final approved POT (7.8 x 10²¹), systematic errors become important

T2K + NOvA




- T2K and N0vA have similar sensitivity to CP violation
- NOvA's sensitivity to the mass hierarchy is enhanced by combining with T2K data
- All results shown so far are available here: http://arxiv.org/abs/1409.7469

T2K Systematic Error Projections

T2K Near Detector Constraints

CC Interaction in the Tracker

Fine-Grained Detectors (FGDs)

- Scintillator strips
- Provides neutrino target
- Detailed vertex information

Time Projection Chambers (TPCs)

- Gas ionization chambers
- Track momentum from curvature
- Particle ID from dE/dx

Not yet used; planned 2015 analysis improvement

FGD2 has water layers to

constrain interactions on

same target as Super-K

2012 Cross Section Model

Main difficulty is in understanding the hadronic current

However, the vector form factors are known from electron scattering!

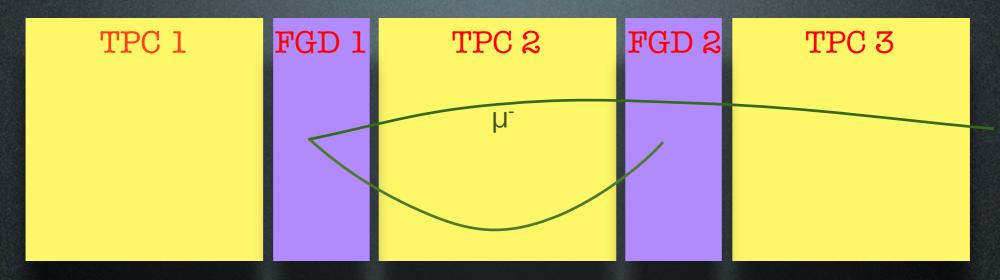
- Remaining axial vector form factor has 2 parameters
- F_A(0) is known from beta decay experiments
- M_A is the only free parameter

$F_A(Q^2) =$	$F_A(0)$
IA(Q) =	$\frac{1}{(1+\frac{Q^2}{M_A^2})^2}$

CC_π⁺

- More complicated (and ad hoc)
- Has its own MA parameter
- Pion-less ∆ decay added by hand

Nuclear Model


- Relativistic Fermi Gas (binding energy + pFermi)
- Can also reweight to a spectral function treatment

Other

• Norm. factors are varied for other processes

	T. D.	27 . 1	-	
Parameter	E_{ν} Range	Nominal	Error	Class
M_A^{QE}	all	$1.21 \text{ GeV}/c^2$	0.45	shape
M_A^{RES}	all	$1.41 \text{ GeV}/c^2$	0.11	shape
p_F $^{12}\mathrm{C}$	all	217 MeV/c	30	shape
E_B ¹² C	all	25 MeV	9	shape
SF ¹² C	all	0 (off)	1 (on)	shape
CC Other shape ND280	all	0.0	0.40	shape
Pion-less Δ Decay	all	0.0	0.2	shape
	/			
CCQE E1	$0 < E_{\nu} < 1.5$	1.0	0.11	norm
CCQE E2	$1.5 < E_{\nu} < 3.5$	1.0	0.30	norm
CCQE E3	$E_{\nu} > 3.5$	1.0	0.30	norm
\rightarrow CC1 π E1	$0 < E_{\nu} < 2.5$	1.15	0.43	norm
$CC1\pi E2$	$E_{\nu} > 2.5$	1.0	0.40	norm
CC Coh	all	1.0	1.0	norm
${ m NC}1\pi^0$	all	0.96	0.43	norm
NC $1\pi^{\pm}$	all	1.0	0.3	norm
NC Coh	all	1.0	0.3	norm
NC other	all	1.0	0.30	norm
$ u_{\mu}/ u_{e}$	all	1.0	0.03	norm
$ u/ar{ u}$	all	1.0	0.40	norm
$ u_{\mu}/ u_{e} $ $ u/ar{ u} $			0.03 0.40	

2012 Event Selection

- Charged-Current events were separated into 2 categories:
 - **CCQE-like sample** (1-track events)
 - 70% CCQE purity (95% at osc. max)
 - CCQE parameters are well constrained
 - **CCnonQE-like sample** (>1-track events)
 - 29% CCπ⁺ purity
 - CCπ⁺ parameters are poorly constrained

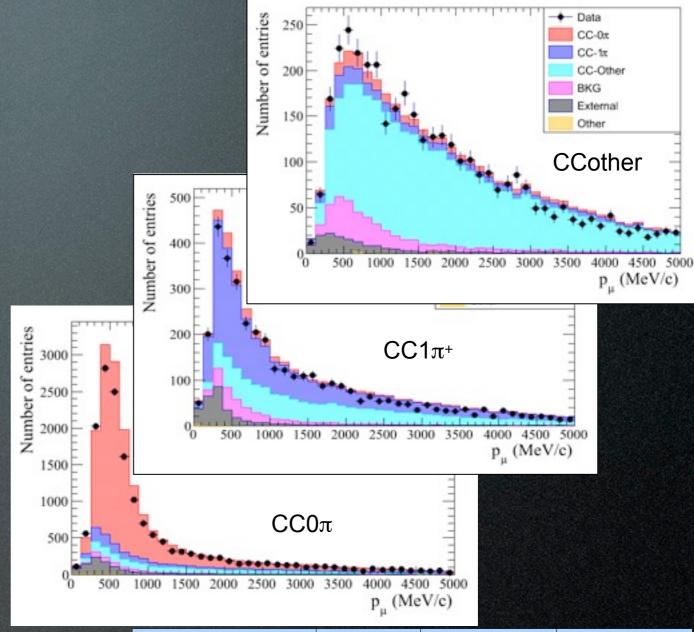
Limitations of the 2012 Near Detector Analysis

- Doubling the data statistics produced only a small reduction in the error on the far detector event rate
- The diagonal error on the cross section parameters were unchanged
 - (some small improvement in the correlated error)

Error on T2K v_e Candidate Prediction (After Near Detector Constraint)

$\sin^2 2\theta_{13}$	Using Data from Runs 1-2	Using Data from Runs 1-3
0.1	5.7%	4.7%
0.0	6.7%	6.1%

Statistics doubled


Error on Cross Section Parameters (After Near Detector Constraint)

Parameter	Run 1-2 Data	Runs 1-3 Data
M _A ^{QE} (GeV/c ²)	1.17 ± 0.19 -	1.27 ± 0.19
M _A ^{RES} (GeV/c ²)	1.25 ± 0.14 —	1.22 ± 0.13
CCQE Norm.	0.95 ± 0.09 🕳	0.95 ± 0.09
CC1π Norm.	1.33 ± 0.22	1.37 ± 0.20

Statistics doubled

2013 Analysis

- Separate the CC sample into three subsamples:
 - CCOπ: **no pions** in the final state
 - CC1 π ⁺: exactly **1** π ⁺ in the final state
 - CCother: >1 π⁺ OR >0 π⁻ OR
 >0 tagged photons
- Higher purities for all 3 samples, relative to the 2012 analysis
 - Much better samples for constraining CCQE and CCπ⁺ cross section parameters

	CC0π	CC1π	CCother
	purities	purities	purities
CC0π	72.6%	6.4%	5.8%
CC1π	8.6%	49.4%	7.8%
CCother	11.4%	31%	73.8%
Bkg(NC+anti-ν)	2.3%	6.8%	8.7%
Out FGD1 FV	5.1%	6.5%	3.9%

Summary of Improvements

ND280 Analysis	ND280 Data	SK Selection	sin²2θ ₁₃ =0.1	sin ² 2θ ₁₃ =0.0	2012 Analysis was systematics
No Constraint		Old	22.6%	18.3%	limited
No Constraint		New	26.9%	22.2%	
2012 method*	Runs 1-2	Old	5.7%	8.7%	Factor 2.4 more ND280 POT
2012 method**	Runs 1-3	Old	5.0%	8.5%	Improved SK
2012 method	Runs 1-3	New	4.9%	6.5%	π ⁰ rejection
2012 method***	Runs 1-3	New	4.7%	6.1%	New ND280 reconstruction,
2013 method	Runs 1-3	New	3.5%	5.2%	selection, binning
2013 method	Runs 1-4	New	3.0%	4.9%	Factor 2.2 more ND280 POT
*Results presented **Published results			e		2013 Analysis method gave a big improvement

The parameters that can be constrained are now very well constrained!

***Update to NEUT tuning with MiniBooNE data

Systematics Reduction

- Largest remaining uncertainties in both v_e appearance and v_μ disappearance are unconstrained cross sections
 - Currently, these errors are dominated by nuclear model uncertainties
 - Expect these errors to be reduced when ND280 water measurement is included
- Is ~3% systematic error achievable?

	$\sin^2 2\theta_{13} = 0$		$\sin^2 2\theta_{13} = 0.1$	
Error source	w/o ND280 fit	w/ ND280 fit	$\rm w/o~ND280~fit$	w/ ND280 fit
Beam only	10.6	7.2	11.4	7.4
M_A^{QE}	15.2	2.3	20.7	3.1
$M_A^{ ilde{R}ES}$	7.1	2.2	3.2	1.0
CCQE norm. $(E_{\nu} < 1.5 \text{ GeV})$	6.9	4.7	9.0	6.2
$CC1\pi$ norm. $(E_{\nu} < 2.5 \text{ GeV})$	4.6	2.4	4.0	2.0
$NC1\pi^0$ norm.	2.5	1.9	0.6	0.4
CC other shape	0.3	0.3	0.1	0.1
Spectral Function	4.7	4.7	5.9	5.9
p_F	0.1	0.1	0.1	0.1
CC coh. norm.	0.3	0.3	0.2	0.2
NC coh. norm.	1.1	1.1	0.2	0.2
NC other norm.	2.2	2.2	0.5	0.5
$\sigma_{ u_e}/\sigma_{ u_\mu}$	2.4	2.4	2.8	2.8
W shape	1.0	1.0	0.2	0.2
pion-less Δ decay	3.2	3.2	3.6	3.6
SK detector eff.	5.6	5.6	2.4	2.4
FSI	3.0	3.0	2.3	2.3
PN	3.4	3.4	0.8	0.8
SK momentum scale	1.5	1.5	0.6	0.6
Total	24.0	11.1	27.2	8.8

ND280 fit constrained

nuclear model (C vs O)

unchanged

To be replaced by MEC

T2K v_e Appearance PRL

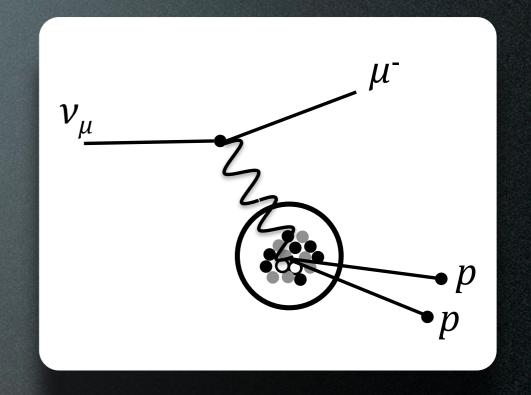
TABLE II. The uncertainty (RMS/mean in %) on the predicted number of signal ν_e events for each group of systematic uncertainties for $\sin^2 2\theta_{13} = 0.1$ and 0.

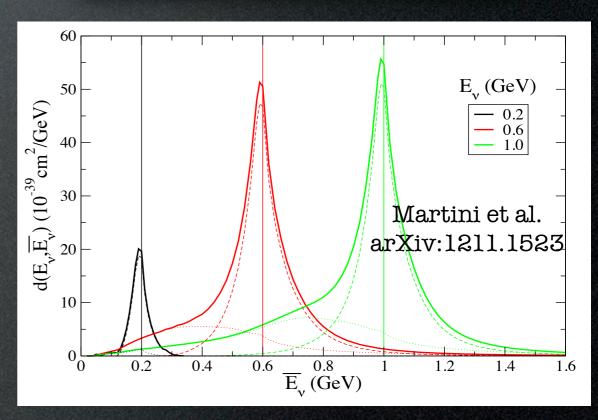
Error source [%]	$\sin^2 2\theta_{13} =$	$= 0.1 \sin^2 2\theta_{13} = 0$
Beam flux and near detector	2.9	4.8
(w/o ND280 constraint)	(25.9)	(21.7)
ν interaction (external data)	7(7.5)	6.8
Far detector and FSI+SI+PN	3.5	7.3
Total	8.8	11.1
		

BANFF parameters before and after ND280 fit

non-BANFF parameters unconstrained by fit

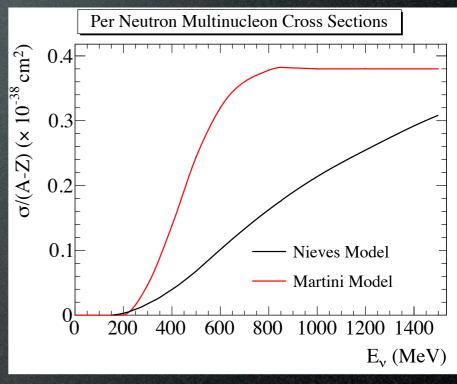
T2K v_{μ} Disappearance

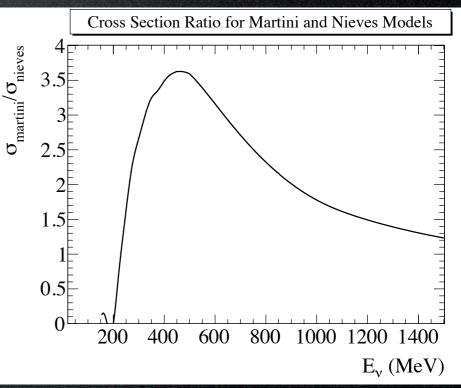

Table 13: Uncertainty (r.m.s./mean in %) on the $N_{\rm exp}^{SK}$ distribution from each group of systematic error source. Systematic parameters refined by the ND280 fit represent "ND280 fit". Mean systematic parameter values after the ND280 fit are used for the both systematic error sets before/after the ND280 fit.


Error source	$(\sin^2 \theta_{23}, \Delta m_{32}^2) =$ Before ND280 fit	(0.5, Afte	2.4×10^{-3}) i ND280 fit
BANFF-constrained Flux and ν interactions	21.6	7	2.7
Unconstrained ν interactions	5.9		4.9
SK detector $+$ $FSI-SI$	6.3		5.6
$\sin^2(\theta_{13}), \sin^2(\theta_{12}), \Delta m_{12}^2, \delta_{CP}$	0.2		0.2
Total	23.4		8.1

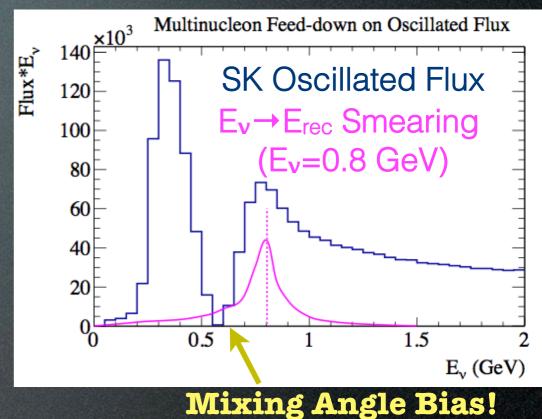
Any Other Systematic Limitations?

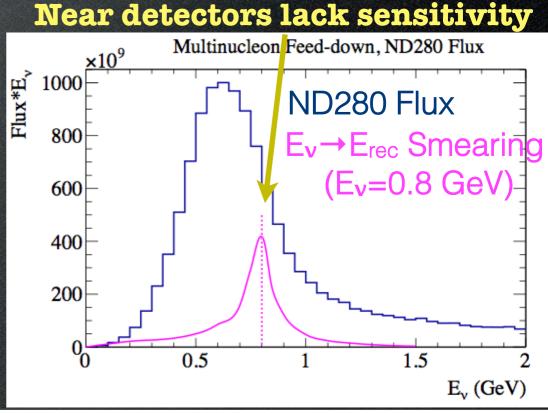
Multi-nucleon Events


- Can experiments measure E_v ?
- Neutrino interaction models are now incorporating interactions with correlated nucleon pairs in the nucleus
 - This was not the case just a few years ago
 - If the current models are correct, a large fraction of events (~20-30%) can have a significant bias in reconstructed energy
- No direct data constraint exists
 - Oscillation experiments completely rely on models that were very different just 5 years ago



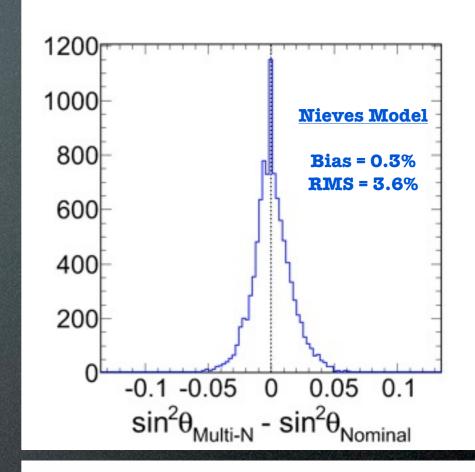
How Well are the New Models Understood?

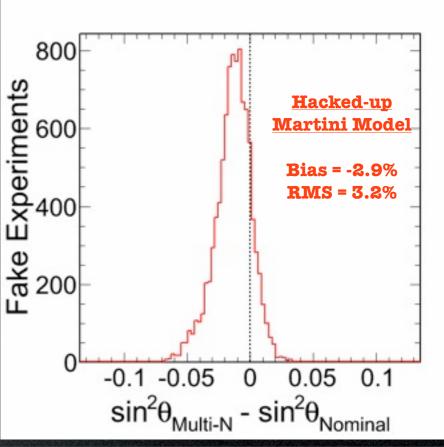

- It is very difficult to answer this question without a direct measurement
- However, the two most commonly used "new" models can be compared
 - J. Nieves, I. Ruiz Simo, and M. J. Vicente Vacas, PRC 83:045501 (2011)
 - M. Martini, M. Ericson, G. Chanfray, and J. Marteau, PRC 80:065501 (2009)
- Cross section differs by a factor of 2 to 3 over a large range of neutrino energies
- Which model is correct?
 - Is either model correct?
- How can we assign a systematic error to this process and trust that it is sufficient to cover the true model in nature?



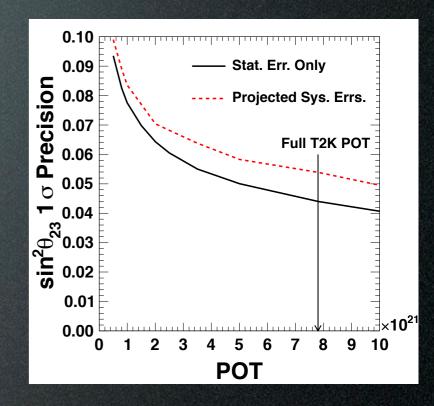
Isn't This is Why Oscillation Experiments Build Near Detectors?

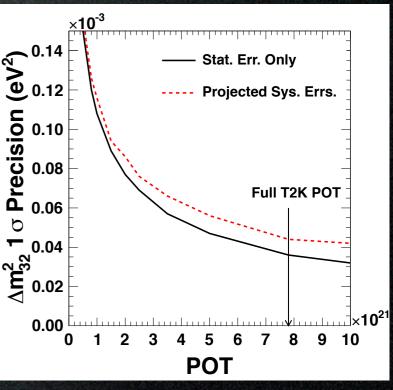
- Shouldn't cross section systematics cancel in a near/far fit?
 - Some errors, like total normalization, will cancel
- However, multi-nucleon effect causes feed-down of events into oscillation dip
 - Cannot disentangle with near detectors
 - Energy spectrum is not oscillated
- More multi-nucleon = smaller dip
 - Multi-nucleon effects are largely degenerate with mixing angle effect!




teetens leek sensitivity

Effect on T2K vµ Disappearance


- Create "fake data" samples with and without multi-nucleon events
 - Compare fitted θ_{23}
- For Nieves model, "average bias" (RMS) = 5.6%
- For Martini model, mean bias = -2.9%, RMS = 3.2%
 - Full systematic = $\sqrt{(2.9\%^2+3.2\%^2)}$ = 4.3%
 - This would be an important systematic error at full T2K POT
 - Not yet incorporated into official results
- But this is just a comparison of 2 models
 - How much larger could the actual systematic uncertainty be?
- A new detector to experimentally address this currently in the proposal stage
 - See the **NuPRISM** talk later in this session



Summary

- T2K can make precise measurements of the ν_{μ} disappearance parameters
 - $\sin^2\theta_{23} 1\sigma$ uncertainty = 0.05-0.06
 - $\Delta m^2_{32} 1\sigma \text{ uncertainty} = 0.04-0.05 (10^{-3} \text{ eV}^2)$
- CP violation uncertainty for T2K only is limited to 2.5σ under current assumptions
 - However, some improvement in sensitivity may be possible by increasing v_e statistics
 - Increase horn current from 250 kA to 320 kA (15%?)
 - Increase fiducial volume (20%?)
 - Include multi-ring event samples (50%?)
 - A 3σ T2K measurement may not be completely ruled out
- Combining with NOvA can significantly enhance CP sensitivity in the favorable regions of parameter space
- Ultimate sensitivity will depend on the ability to control systematic parameters (see NuPRISM talk)

Supplement

2015 Systematic Errors

• Further reduction of T2K systematic uncertainties has already been demonstrated by improving the cross section modeling

SOURCE	v_e	${oldsymbol{\mathcal{V}}}_{\mu}$
ϕ + σ (ND-constrained)	26.0	21.8
w/ND280	3.1	2.7
ϕ + σ (ND-independent)	4.7	5.0
π secondary	2.4	3.0
SK DETECTOR	2.7	4.0
TOTAL without ND280	26.8	23.5
with ND280	6.8	7.7